{ "id": "2112.04280", "version": "v2", "published": "2021-12-08T13:36:45.000Z", "updated": "2022-04-19T10:15:22.000Z", "title": "A proof of Sanov's Theorem via discretizations", "authors": [ "Rangel Baldasso", "Roberto I. Oliveira", "Alan Pereira", "Guilherme Reis" ], "comment": "Published version", "journal": "Journal of Theoretical Probability (2022)", "doi": "10.1007/s10959-022-01174-0", "categories": [ "math.PR" ], "abstract": "We present an alternative proof of Sanov's theorem for Polish spaces in the weak topology that follows via discretization arguments. We combine the simpler version of Sanov's Theorem for discrete finite spaces and well chosen finite discretizations of the Polish space. The main tool in our proof is an explicit control on the rate of convergence for the approximated measures.", "revisions": [ { "version": "v2", "updated": "2022-04-19T10:15:22.000Z" } ], "analyses": { "subjects": [ "60F10" ], "keywords": [ "sanovs theorem", "polish space", "chosen finite discretizations", "discrete finite spaces", "discretization arguments" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }