{ "id": "2112.04144", "version": "v2", "published": "2021-12-08T06:50:24.000Z", "updated": "2022-01-27T22:27:08.000Z", "title": "On Hausdorff dimension in inhomogeneous Diophantine approximation over global function fields", "authors": [ "Taehyeong Kim", "Seonhee Lim", "Frédéric Paulin" ], "comment": "53 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "In this paper, we study inhomogeneous Diophantine approximation over the completion $K_v$ of a global function field $K$ (over a finite field) for a discrete valuation $v$, with affine algebra $R_v$. We obtain an effective upper bound for the Hausdorff dimension of the set \\[ \\mathbf{Bad}_A(\\epsilon)=\\left\\{\\boldsymbol{\\theta}\\in K_v^{\\,m} : \\liminf_{(\\mathbf{p},\\mathbf{q})\\in R_v^{\\,m} \\times R_v^{\\,n}, \\|\\mathbf{q}\\|\\to \\infty} \\|\\mathbf{q}\\|^n \\|A\\mathbf{q}-\\boldsymbol{\\theta}-\\mathbf{p}\\|^m \\geq \\epsilon \\right\\}, \\] of $\\epsilon$-badly approximable targets $\\boldsymbol{\\theta}\\in K_v^{\\,m}$ for a fixed matrix $A\\in\\mathscr{M}_{m,n}(K_v)$, using an effective version of entropy rigidity in homogeneous dynamics for an appropriate diagonal action on the space of $R_v$-grids. We further characterize matrices $A$ for which $\\mathbf{Bad}_A(\\epsilon)$ has full Hausdorff dimension for some $\\epsilon>0$ by a Diophantine condition of singularity on average. Our methods also work for the approximation using weighted ultrametric distances.", "revisions": [ { "version": "v2", "updated": "2022-01-27T22:27:08.000Z" } ], "analyses": { "keywords": [ "global function field", "study inhomogeneous diophantine approximation", "appropriate diagonal action", "full hausdorff dimension", "affine algebra" ], "note": { "typesetting": "TeX", "pages": 53, "language": "en", "license": "arXiv", "status": "editable" } } }