{ "id": "2112.01615", "version": "v2", "published": "2021-12-02T21:46:34.000Z", "updated": "2023-03-22T22:31:03.000Z", "title": "The average number of integral points on the congruent number curves", "authors": [ "Stephanie Chan" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "We show that the total number of non-torsion integral points on the elliptic curves $\\mathcal{E}_D:y^2=x^3-D^2x$, where $D$ ranges over positive squarefree integers less than $N$, is $O( N(\\log N)^{-1/4+\\epsilon})$. The proof involves a discriminant-lowering procedure on integral binary quartic forms and an application of Heath-Brown's method on estimating the average size of the $2$-Selmer group of the curves in this family.", "revisions": [ { "version": "v2", "updated": "2023-03-22T22:31:03.000Z" } ], "analyses": { "subjects": [ "11G05", "11N45", "11R45" ], "keywords": [ "congruent number curves", "average number", "integral binary quartic forms", "non-torsion integral points", "positive squarefree integers" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }