{ "id": "2112.01595", "version": "v2", "published": "2021-12-02T20:23:47.000Z", "updated": "2022-06-13T20:16:11.000Z", "title": "Smooth rigidity for codimension one Anosov flows", "authors": [ "Andrey Gogolev", "Federico Rodriguez Hertz" ], "comment": "15 pages, 2 figures; final version", "categories": [ "math.DS" ], "abstract": "We introduce the matching functions technique in the setting of Anosov flows. Then we observe that simple periodic cycle functionals (also known as temporal distance functions) provide a source of matching functions for conjugate Anosov flows. For conservative codimension one Anosov flows $\\varphi^t\\colon M\\to M$, $\\dim M\\ge 4$, these simple periodic cycle functionals are $C^1$ regular and, hence, can be used to improve regularity of the conjugacy. Specifically, we prove that a continuous conjugacy must, in fact, be a $C^1$ diffeomorphism for an open and dense set of codimension one conservative Anosov flows.", "revisions": [ { "version": "v2", "updated": "2022-06-13T20:16:11.000Z" } ], "analyses": { "keywords": [ "smooth rigidity", "simple periodic cycle functionals", "codimension", "temporal distance functions", "conjugate anosov flows" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }