{ "id": "2111.14763", "version": "v2", "published": "2021-11-29T18:15:33.000Z", "updated": "2022-08-16T13:57:22.000Z", "title": "Resolvents for fractional-order operators with nonhomogeneous local boundary conditions", "authors": [ "Gerd Grubb" ], "comment": "47 pages. Small improvements here and there", "categories": [ "math.AP", "math.FA", "math.SP" ], "abstract": "For $2a$-order strongly elliptic operators $P$ generalizing $(-\\Delta )^a$, $02a$. Presently, we study the $L_q$-Dirichlet realizations of $P$ and $P^*$, showing invertibility or Fredholmness, finding smoothness results for the kernels and cokernels, and establishing similar results for $P-\\lambda I$, $\\lambda \\in C$. The solution spaces equal $a$-transmission spaces $H_q^{a(s+2a)}(\\bar\\Omega)$. Similar results are shown for nonhomogeneous Dirichlet problems, prescribing the local Dirichlet trace $(u/d^{a-1})|_{\\partial\\Omega }$, $d(x)=dist(x,\\partial\\Omega)$. They are solvable in the larger spaces $H_q^{(a-1)(s+2a)}(\\bar\\Omega)$. Moreover, the nonhomogeneous problem with a spectral parameter $\\lambda \\in C$, $$ Pu-\\lambda u = f \\text { in }\\Omega ,\\quad u=0 \\text { in }R^n\\setminus \\Omega ,\\quad (u/d^{a-1 })|_{\\partial\\Omega }=\\varphi \\text{ on }\\partial\\Omega , $$ is for $q<(1-a)^{-1}$ shown to be uniquely resp. Fredholm solvable when $\\lambda $ is in the resolvent set resp. the spectrum of the $L_2$-Dirichlet realization. Finally, we show solvability results for evolution problems $Pu+d_tu= f(x,t)$ in $L_2$ and $L_q$-based spaces over $C^{1+\\tau}$-domains, including nonhomogeneous local boundary conditions.", "revisions": [ { "version": "v2", "updated": "2022-08-16T13:57:22.000Z" } ], "analyses": { "subjects": [ "35S15", "47G30", "35J25", "35K05", "60G51" ], "keywords": [ "nonhomogeneous local boundary conditions", "fractional-order operators", "similar results", "dirichlet realization", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 47, "language": "en", "license": "arXiv", "status": "editable" } } }