{ "id": "2111.13521", "version": "v2", "published": "2021-11-26T14:37:40.000Z", "updated": "2022-03-25T11:26:44.000Z", "title": "On the numerical dimension of Calabi-Yau 3-folds of Picard number 2", "authors": [ "Michael Hoff", "Isabel Stenger" ], "comment": "17 pages, added an argument in the proof of the main theorem, improvements following the referee's suggestions", "categories": [ "math.AG" ], "abstract": "We show that for any smooth Calabi-Yau threefold $X$ of Picard number $2$ with infinite birational automorphism group, the numerical dimension $\\kappa_\\sigma$ of the extremal rays of the movable cone of $X$ is $\\frac{3}{2}$. Furthermore, we provide new examples of Calabi-Yau threefolds of Picard number $2$ with infinite birational automorphism group.", "revisions": [ { "version": "v2", "updated": "2022-03-25T11:26:44.000Z" } ], "analyses": { "keywords": [ "picard number", "numerical dimension", "infinite birational automorphism group", "smooth calabi-yau threefold", "extremal rays" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }