{ "id": "2111.11123", "version": "v2", "published": "2021-11-22T11:22:38.000Z", "updated": "2022-03-01T17:21:55.000Z", "title": "A $q$-multisum identity arising from finite chain ring probabilities", "authors": [ "Jehanne Dousse", "Robert Osburn" ], "comment": "7 pages, to appear in the Electronic Journal of Combinatorics", "categories": [ "math.NT", "math.CO" ], "abstract": "In this note, we prove a general identity between a $q$-multisum $B_N(q)$ and a sum of $N^2$ products of quotients of theta functions. The $q$-multisum $B_N(q)$ recently arose in the computation of a probability involving modules over finite chain rings.", "revisions": [ { "version": "v2", "updated": "2022-03-01T17:21:55.000Z" } ], "analyses": { "subjects": [ "16P10", "16P70", "33D15" ], "keywords": [ "probability", "finite chain ring probabilities", "multisum identity arising", "general identity", "theta functions" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }