{ "id": "2111.10807", "version": "v1", "published": "2021-11-21T12:24:41.000Z", "updated": "2021-11-21T12:24:41.000Z", "title": "A convergence criterion for the unstable manifolds of the MacKay approximate renormalisation", "authors": [ "Seul Bee Lee", "Stefano Marmi", "Tanja I. Schindler" ], "journal": "Phys. D: Nonlinear Phenom. 435 (2022)", "doi": "10.1016/j.physd.2022.133300", "categories": [ "math.DS" ], "abstract": "We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition is violated, we give an example of points on which the unstable manifold does not converge.", "revisions": [ { "version": "v1", "updated": "2021-11-21T12:24:41.000Z" } ], "analyses": { "subjects": [ "37J40", "37F50", "70H08" ], "keywords": [ "unstable manifold", "convergence criterion", "mackay approximate renormalisation scheme", "freedom hamiltonian systems", "half degrees" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }