{ "id": "2111.10082", "version": "v1", "published": "2021-11-19T07:52:36.000Z", "updated": "2021-11-19T07:52:36.000Z", "title": "On normal numbers and self-similar measures", "authors": [ "Amir Algom", "Simon Baker", "Pablo Shmerkin" ], "comment": "This article supersedes arXiv:2107.02699", "journal": "Adv. Math. 399 (2022), Paper No. 108276, 17 pp", "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "Let $\\lbrace f_i(x)=s_i \\cdot x+t_i \\rbrace$ be a self-similar IFS on $\\mathbb{R}$ and let $\\beta >1$ be a Pisot number. We prove that if $\\frac{\\log |s_i|}{\\log \\beta}\\notin \\mathbb{Q}$ for some $i$ then for every $C^1$ diffeomorphism $g$ and every non-atomic self similar measure $\\mu$, the measure $g\\mu$ is supported on numbers that are normal in base $\\beta$.", "revisions": [ { "version": "v1", "updated": "2021-11-19T07:52:36.000Z" } ], "analyses": { "keywords": [ "self-similar measures", "normal numbers", "non-atomic self similar measure", "pisot number", "self-similar ifs" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }