{ "id": "2111.09623", "version": "v2", "published": "2021-11-18T11:02:21.000Z", "updated": "2021-12-06T09:39:06.000Z", "title": "The asymptotic expansion of a Mathieu-exponential series", "authors": [ "R B Paris" ], "comment": "12 pages, 1 figure", "categories": [ "math.CA" ], "abstract": "We consider the asymptotic expansion of the functional series \\[S_{\\mu}^\\pm(a;\\lambda)=\\sum_{n=0}^\\infty \\frac{(\\pm 1)^n e^{-\\lambda n}}{(n^2+a^2)^\\mu}\\] for $\\lambda>0$ and $\\mu\\geq0$ as $|a|\\to \\infty$ in the sector $|\\arg\\,a|<\\pi/2$. The approach employed consists of expressing $S_{\\mu}^\\pm(a;\\lambda)$ as a contour integral combined with suitable deformation of the integration path. Numerical examples are provided to illustrate the accuracy of the various expansions obtained.", "revisions": [ { "version": "v2", "updated": "2021-12-06T09:39:06.000Z" } ], "analyses": { "subjects": [ "30E15", "33E20", "33C15", "34E05", "41A60" ], "keywords": [ "asymptotic expansion", "mathieu-exponential series", "functional series", "approach employed consists", "contour integral" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }