{ "id": "2111.08912", "version": "v2", "published": "2021-11-17T05:33:08.000Z", "updated": "2022-05-30T15:21:32.000Z", "title": "On the Hardy-Littlewood-Chowla conjecture on average", "authors": [ "Jared Duker Lichtman", "Joni Teräväinen" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "There has been recent interest in a hybrid form of the celebrated conjectures of Hardy-Littlewood and of Chowla. We prove that for any $k,\\ell\\ge1$ and distinct integers $h_2,\\ldots,h_k,a_1,\\ldots,a_\\ell$, we have $$\\sum_{n\\leq X}\\mu(n+h_1)\\cdots \\mu(n+h_k)\\Lambda(n+a_1)\\cdots\\Lambda(n+a_{\\ell})=o(X)$$ for all except $o(H)$ values of $h_1\\leq H$, so long as $H\\geq (\\log X)^{\\ell+\\varepsilon}$. This improves on the range $H\\ge (\\log X)^{\\psi(X)}$, $\\psi(X)\\to\\infty$, obtained in previous work of the first author. Our results also generalize from the M\\\"obius function $\\mu$ to arbitrary (non-pretentious) multiplicative functions.", "revisions": [ { "version": "v2", "updated": "2022-05-30T15:21:32.000Z" } ], "analyses": { "subjects": [ "11P32", "11L20", "11N37" ], "keywords": [ "hardy-littlewood-chowla conjecture", "first author", "hybrid form", "distinct integers", "celebrated conjectures" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }