{ "id": "2111.08778", "version": "v2", "published": "2021-11-16T20:58:29.000Z", "updated": "2023-05-31T22:36:09.000Z", "title": "Proof of some congruence conjectures of Z.-H. Sun involving Apéry-like numbers", "authors": [ "Guo-Shuai Mao" ], "comment": "12 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we mainly prove the following conjecture of Z.-H. Sun cite{SH20}: Let $p>3$ be a prime. Then $$\\sum_{k=0}^{p-1}\\binom{2k}k\\frac{3k+1}{(-16)^k}f_k\\equiv(-1)^{(p-1)/2}p+p^3E_{p-3}\\pmod{p^4},$$ where $f_n=\\sum_{k=0}^n\\binom{n}k^3$ and $E_n$ stand for the $n$th Franel number and $n$th Euler number respectively.", "revisions": [ { "version": "v2", "updated": "2023-05-31T22:36:09.000Z" } ], "analyses": { "keywords": [ "congruence conjectures", "apéry-like numbers", "th euler number", "th franel number", "sun cite" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }