{ "id": "2111.07381", "version": "v2", "published": "2021-11-14T16:12:59.000Z", "updated": "2023-11-11T21:47:28.000Z", "title": "The wave maps equation and Brownian paths", "authors": [ "Bjoern Bringmann", "Jonas Luhrmann", "Gigliola Staffilani" ], "comment": "Minor changes to incorporate the reviewers' suggestions", "categories": [ "math.AP", "math-ph", "math.MP", "math.PR" ], "abstract": "We discuss the $(1+1)$-dimensional wave maps equation with values in a compact Riemannian manifold $\\mathcal{M}$. Motivated by the Gibbs measure problem, we consider Brownian paths on the manifold $\\mathcal{M}$ as initial data. Our main theorem is the probabilistic local well-posedness of the associated initial value problem. The analysis in this setting combines analytic, geometric, and probabilistic methods.", "revisions": [ { "version": "v2", "updated": "2023-11-11T21:47:28.000Z" } ], "analyses": { "subjects": [ "35L05", "53E99", "60L40" ], "keywords": [ "brownian paths", "dimensional wave maps equation", "compact riemannian manifold", "gibbs measure problem", "probabilistic local well-posedness" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }