{ "id": "2111.06963", "version": "v2", "published": "2021-11-05T02:40:19.000Z", "updated": "2023-10-18T15:34:15.000Z", "title": "Bertrand's Postulate for Carmichael Numbers", "authors": [ "Daniel Larsen" ], "comment": "27 pages; corrected minor issues", "journal": "Int. Math. Res. Not. (2023), no. 15, 13072-13098", "categories": [ "math.NT" ], "abstract": "Alford, Granville, and Pomerance proved that there are infinitely many Carmichael numbers. In the same paper, they ask if a statement analogous to Bertrand's postulate could be proven for Carmichael numbers. In this paper, we answer this question, proving the stronger statement that for all $\\delta>0$ and $x$ sufficiently large in terms of $\\delta$, there exist at least $e^{\\frac{\\log x}{(\\log\\log x)^{2+\\delta}}}$ Carmichael numbers between $x$ and $x+\\frac{x}{(\\log x)^{\\frac{1}{2+\\delta}}}$.", "revisions": [ { "version": "v2", "updated": "2023-10-18T15:34:15.000Z" } ], "analyses": { "subjects": [ "11N25" ], "keywords": [ "carmichael numbers", "bertrands postulate", "stronger statement", "sufficiently large" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }