{ "id": "2111.05899", "version": "v1", "published": "2021-11-10T19:43:13.000Z", "updated": "2021-11-10T19:43:13.000Z", "title": "On power integral bases of certain pure number fields defined by $X^{60}-m$", "authors": [ "Lhoussain El Fadil", "Omar Kchit", "Hanan Choulli" ], "comment": "Submitted. arXiv admin note: substantial text overlap with arXiv:2106.01252, arXiv:2106.00004", "categories": [ "math.NT" ], "abstract": "Let $K$ be a pure number field generated by a complex root of a monic irreducible polynomial $F(x)=x^{60}-m\\in \\mathbb{Z}[x]$, with $m\\neq \\pm1$ a square free integer. In this paper, we study the monogeneity of $K$. We prove that if $m\\not\\equiv 1\\md{4}$, $m\\not\\equiv \\mp 1 \\md{9} $ and $\\overline{m}\\not\\in\\{\\mp 1,\\mp 7\\} \\md{25}$, then $K$ is monogenic. But if $m\\equiv 1\\md{4}$, $m\\equiv \\mp1 \\md{9}$, or $m\\equiv \\mp 1\\md{25}$, then $K$ is not monogenic. Our results are illustrated by examples.", "revisions": [ { "version": "v1", "updated": "2021-11-10T19:43:13.000Z" } ], "analyses": { "subjects": [ "11R04", "11Y40", "11R21", "C.m" ], "keywords": [ "pure number field", "power integral bases", "square free integer", "complex root", "monic irreducible polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }