{ "id": "2111.05079", "version": "v2", "published": "2021-11-09T12:19:34.000Z", "updated": "2022-09-27T01:22:21.000Z", "title": "Scalar curvature lower bound under integral convergence", "authors": [ "Yiqi Huang", "Man-Chun Lee" ], "comment": "final version, 11 pages, minor mistakes corrected", "categories": [ "math.DG" ], "abstract": "In this work, we consider sequences of $C^2$ metrics which converge to a $C^2$ metric in $C^0$ sense. We show that if the scalar curvature of the sequence is almost non-negative in the integral sense, then the limiting metric has scalar curvature lower bound in point-wise sense.", "revisions": [ { "version": "v2", "updated": "2022-09-27T01:22:21.000Z" } ], "analyses": { "keywords": [ "scalar curvature lower bound", "integral convergence", "integral sense", "limiting metric", "point-wise sense" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }