{ "id": "2111.04183", "version": "v4", "published": "2021-11-07T21:36:24.000Z", "updated": "2022-08-29T11:02:04.000Z", "title": "Asymptotics for the twisted eta-product and applications to sign changes in partitions", "authors": [ "Walter Bridges", "Johann Franke", "Taylor Garnowski" ], "comment": "Typos and grammatical errors fixed", "categories": [ "math.NT", "math.CO" ], "abstract": "We prove asymptotic formulas for the complex coefficients of $(\\zeta q;q)_\\infty^{-1}$, where $\\zeta$ is a root of unity, and apply our results to determine secondary terms in the asymptotics for $p(a,b,n)$, the number of integer partitions of $n$ with largest part congruent $a$ modulo $b$. Our results imply that, as $n \\to \\infty$, the difference $p(a_1,b,n)-p(a_2,b,n)$ for $a_1 \\neq a_2$ oscillates like a cosine, when renormalized by elementary functions. Moreover, we give asymptotic formulas for arbitrary linear combinations of $\\{p(a,b,n)\\}_{1 \\leq a \\leq b}$.", "revisions": [ { "version": "v4", "updated": "2022-08-29T11:02:04.000Z" } ], "analyses": { "keywords": [ "sign changes", "twisted eta-product", "asymptotic formulas", "applications", "determine secondary terms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }