{ "id": "2111.03838", "version": "v2", "published": "2021-11-06T09:09:12.000Z", "updated": "2022-12-01T08:57:50.000Z", "title": "New bound for Roth's theorem with generalized coefficients", "authors": [ "Cédric Pilatte" ], "comment": "21 pages, 1 figure", "journal": "Discrete Analysis, 2022:16, 21 pp", "doi": "10.19086/da.55553", "categories": [ "math.CO", "math.NT" ], "abstract": "We prove the following conjecture of Shkredov and Solymosi: every subset $A \\subset \\mathbf{Z}^2$ such that $\\sum_{a\\in A\\setminus\\{0\\}} 1/\\left\\|a\\right\\|^{2} = +\\infty$ contains the three vertices of an isosceles right triangle. To do this, we adapt the proof of the recent breakthrough by Bloom and Sisask on sets without three-term arithmetic progressions, to handle more general equations of the form $T_1a_1+T_2a_2+T_3a_3 = 0$ in a finite abelian group $G$, where the $T_i$'s are automorphisms of $G$.", "revisions": [ { "version": "v2", "updated": "2022-12-01T08:57:50.000Z" } ], "analyses": { "keywords": [ "roths theorem", "generalized coefficients", "isosceles right triangle", "three-term arithmetic progressions", "finite abelian group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }