{ "id": "2110.13657", "version": "v2", "published": "2021-10-26T12:56:27.000Z", "updated": "2021-11-11T10:47:29.000Z", "title": "Riesz capacities of a set due to DobiƄski", "authors": [ "Nicola Arcozzi", "Nikolaos Chalmoukis" ], "comment": "7 pages", "categories": [ "math.CA", "math.NT" ], "abstract": "We study the Riesz $(a,p)$-capacity of the so called Dobi\\'nski set. We characterize the values of the parameters $a$ and $p$ for which the $(a,p)$-Riesz capacity of the Dobi\\'nski set is positive. In particular we show that the Dobi\\'nski set has positive logarithmic capacity, thus answering a question of Dayan, Fernand\\'ez and Gonz\\'alez. We approach the problem by considering the dyadic analogues of the Riesz $(a,p)$-capacities which seem to be better adapted to the problem.", "revisions": [ { "version": "v2", "updated": "2021-11-11T10:47:29.000Z" } ], "analyses": { "subjects": [ "31C20", "30C85", "31A15", "11J83" ], "keywords": [ "riesz capacity", "dobinski set", "positive logarithmic capacity", "dyadic analogues", "parameters" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }