{ "id": "2110.12375", "version": "v4", "published": "2021-10-24T07:31:40.000Z", "updated": "2022-07-12T17:10:26.000Z", "title": "Semi-equivelar toroidal maps and their vertex covers", "authors": [ "Arnab Kundu", "Dipendu Maity" ], "categories": [ "math.CO" ], "abstract": "If the face\\mbox{-}cycles at all the vertices in a map are of same type then the map is called semi\\mbox{-}equivelar. A map is called minimal if the number of vertices is minimal. We know the bounds of number of vertex orbits of semi-equivelar toroidal maps. These bounds are sharp. Datta \\cite{BD2020} has proved that every semi-equivelar toroidal map has a vertex-transitive cover. In this article, we prove that if a semi-equivelar map is $k$ orbital then it has a finite index $m$-orbital minimal cover for $m \\le k$. We also show the existence and classification of $n$-sheeted covers of semi-equivelar toroidal maps for each $n \\in \\mathbb{N}$.", "revisions": [ { "version": "v4", "updated": "2022-07-12T17:10:26.000Z" } ], "analyses": { "subjects": [ "52C20", "52B70", "51M20", "57M60" ], "keywords": [ "semi-equivelar toroidal map", "vertex covers", "orbital minimal cover", "vertex orbits", "finite index" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }