{ "id": "2110.08870", "version": "v2", "published": "2021-10-17T17:11:07.000Z", "updated": "2022-06-21T09:50:58.000Z", "title": "Gallai's path decomposition in planar graphs", "authors": [ "Alexandre Blanché", "Marthe Bonamy", "Nicolas Bonichon" ], "categories": [ "math.CO" ], "abstract": "In 1968, Gallai conjectured that the edges of any connected graph with $n$ vertices can be partitioned into $\\lceil \\frac{n}{2} \\rceil$ paths. We show that this conjecture is true for every planar graph. More precisely, we show that every connected planar graph except $K_3$ and $K_5^-$ ($K_5$ minus one edge) can be decomposed into $\\lfloor \\frac{n}{2} \\rfloor$ paths.", "revisions": [ { "version": "v2", "updated": "2022-06-21T09:50:58.000Z" } ], "analyses": { "keywords": [ "gallais path decomposition", "connected planar graph", "conjecture", "connected graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }