{ "id": "2110.08312", "version": "v3", "published": "2021-10-15T18:41:08.000Z", "updated": "2022-05-18T14:06:49.000Z", "title": "Hanner's Inequality For Positive Semidefinite Matrices", "authors": [ "Victoria M. Chayes" ], "comment": "Error in Theorem 3.1 requires significant correction", "categories": [ "math.FA", "math.OA" ], "abstract": "We prove an analogous Hanner's Inequality of $L^p$ spaces for positive semidefinite matrices. Let $||X||_p=\\text{Tr}[(X^\\ast X)^{p/2}]^{1/p}$ denote the $p$-Schatten norm of a matrix $X\\in M_{n\\times n}(\\mathbb{C})$. We show that the inequality $||X+Y||_p^p+||X-Y||_p^p\\geq (||X||_p+||Y||_p)^p+(|||X||_p-||Y||_p|)^p$ holds for $1\\leq p\\leq 2$ and reverses for $p\\geq 2$ when $X,Y\\in M_{n\\times n}(\\mathbb{C})^+$. This was previously known in the $1