{ "id": "2110.07988", "version": "v2", "published": "2021-10-15T10:23:28.000Z", "updated": "2021-11-27T09:40:32.000Z", "title": "A note on exponential Riesz bases", "authors": [ "Andrei Caragea", "Dae Gwan Lee" ], "journal": "Sampl. Theory Signal Process. Data Anal. Vol. 20, Article number: 13 (2022), Open Access", "doi": "10.1007/s43670-022-00031-9", "categories": [ "math.CA" ], "abstract": "We prove that if $I_\\ell = [a_\\ell,b_\\ell)$, $\\ell=1, \\ldots, L$, are disjoint intervals in $[0,1)$ with the property that the numbers $1, a_1, \\ldots, a_L, b_1, \\ldots, b_L$ are linearly independent over $\\mathbb{Q}$, then there exist pairwise disjoint sets $\\Lambda_\\ell \\subset \\mathbb{Z}$, $\\ell=1, \\ldots, L$, such that for every $J \\subset \\{ 1, \\ldots , L \\}$, the system $\\{e^{2\\pi i \\lambda x} : \\lambda\\in \\cup_{\\ell \\in J} \\, \\Lambda_\\ell \\}$ is a Riesz basis for $L^2 ( \\cup_{\\ell \\in J} \\, I_\\ell)$. Also, we show that for any disjoint intervals $I_\\ell$, $\\ell=1, \\ldots, L$, contained in $[1,N)$ with $N \\in \\mathbb{N}$, the orthonormal basis $\\{e^{2\\pi i n x} : n \\in \\mathbb{Z} \\}$ of $L^2[0,1)$ can be complemented by a Riesz basis $\\{e^{2\\pi i \\lambda x} : \\lambda\\in\\Lambda\\}$ for $L^2(\\cup_{\\ell=1}^L \\, I_{\\ell})$ with some set $\\Lambda \\subset (\\frac{1}{N} \\mathbb{Z}) \\backslash \\mathbb{Z}$, in the sense that their union $\\{e^{2\\pi i \\lambda x} : \\lambda\\in \\mathbb{Z} \\cup \\Lambda\\}$ is a Riesz basis for $L^2 ( [0,1) \\cup I_1 \\cup \\cdots \\cup I_L )$.", "revisions": [ { "version": "v2", "updated": "2021-11-27T09:40:32.000Z" } ], "analyses": { "subjects": [ "42C15" ], "keywords": [ "riesz basis", "exponential riesz bases", "disjoint intervals", "pairwise disjoint sets", "orthonormal basis" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }