{ "id": "2110.07819", "version": "v2", "published": "2021-10-15T02:32:55.000Z", "updated": "2022-06-07T18:43:54.000Z", "title": "Torsion for CM elliptic curves defined over number fields of degree 2p", "authors": [ "Abbey Bourdon", "Holly Paige Chaos" ], "categories": [ "math.NT", "math.AG" ], "abstract": "For a prime number p, we characterize the groups that may arise as torsion subgroups of an elliptic curve with complex multiplication defined over a number field of degree 2p. In particular, our work shows that a classification in the strongest sense is tied to determining whether there exist infinitely many Sophie Germain primes.", "revisions": [ { "version": "v2", "updated": "2022-06-07T18:43:54.000Z" } ], "analyses": { "subjects": [ "11G15", "11G05" ], "keywords": [ "cm elliptic curves", "degree 2p", "number field", "sophie germain primes", "complex multiplication" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }