{ "id": "2110.06379", "version": "v3", "published": "2021-10-12T22:02:03.000Z", "updated": "2022-10-11T13:42:09.000Z", "title": "Spectra for Toeplitz Operators Associated with a Constrained Subalgebra", "authors": [ "Christopher Felder", "Douglas T. Pfeffer", "Benjamin P. Russo" ], "comment": "20 pages, no figures", "categories": [ "math.FA", "math.CV" ], "abstract": "A two-point algebra is a set of bounded analytic functions on the unit disk that agree at two distinct points $a,b \\in \\mathbb{D}$. This algebra serves as a multiplier algebra for the family of Hardy Hilbert spaces $H^2_t := \\{ f\\in H^2 : f(a)=tf(b)\\}$, where $t\\in \\mathbb{C}\\cup\\{\\infty\\}$. We show that various spectra of certain Toeplitz operators acting on these spaces are connected.", "revisions": [ { "version": "v3", "updated": "2022-10-11T13:42:09.000Z" } ], "analyses": { "subjects": [ "47A75", "47B35" ], "keywords": [ "toeplitz operators", "constrained subalgebra", "hardy hilbert spaces", "unit disk", "bounded analytic functions" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }