{ "id": "2110.04568", "version": "v2", "published": "2021-10-09T13:32:31.000Z", "updated": "2022-09-08T11:08:19.000Z", "title": "Convergence of measures after adding a real", "authors": [ "Damian Sobota", "Lyubomyr Zdomskyy" ], "comment": "extended version, 23 pages", "categories": [ "math.LO", "math.FA", "math.GN" ], "abstract": "We prove that if $\\mathcal{A}$ is an infinite Boolean algebra in the ground model $V$ and $\\mathbb{P}$ is a notion of forcing adding any of the following reals: a Cohen real, an unsplit real, or a random real, then, in any $\\mathbb{P}$-generic extension $V[G]$, $\\mathcal{A}$ has neither the Nikodym property nor the Grothendieck property. A similar result is also proved for a dominating real and the Nikodym property.", "revisions": [ { "version": "v2", "updated": "2022-09-08T11:08:19.000Z" } ], "analyses": { "keywords": [ "convergence", "nikodym property", "infinite boolean algebra", "cohen real", "similar result" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }