{ "id": "2110.04278", "version": "v2", "published": "2021-10-06T04:34:05.000Z", "updated": "2022-03-12T01:08:55.000Z", "title": "On Large Values of $|ζ(σ+{\\rm i}t)|$", "authors": [ "Zikang Dong", "Bin Wei" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "We investigate the extreme values of the Riemann zeta function $\\zeta(s)$. On the 1-line, we obtain a lower bound evaluation $$\\max_{t\\in[1,T]}|\\zeta(1+\\i t)|\\ge {\\rm e}^\\gamma(\\log_2T+\\log_3T+c),$$ with an effective constant $c$ which improves the result of Aistleitner, Mahatab and Munsch. In the half-critical strip $1/2<\\re s<1$, we get an improved $c(\\sigma)$ in the evaluation $$\\max_{t\\in[0,T]}\\log|\\zeta(\\sigma+\\i t)|\\ge c(\\sigma)\\frac{(\\log T)^{1-\\sigma}}{(\\log_2T)^\\sigma},$$ when $\\sigma\\searrow 1/2$, based on an improved lower bound of GCD sums. This improves the result of Bondarenko and Seip.", "revisions": [ { "version": "v2", "updated": "2022-03-12T01:08:55.000Z" } ], "analyses": { "keywords": [ "large values", "riemann zeta function", "lower bound evaluation", "gcd sums", "extreme values" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }