{ "id": "2110.04014", "version": "v1", "published": "2021-10-08T10:19:29.000Z", "updated": "2021-10-08T10:19:29.000Z", "title": "Critical points in the $CP^{N-1}$ model", "authors": [ "Youness Diouane", "Noel Lamsen", "Gesualdo Delfino" ], "comment": "21 pages, 10 figures, 5 tables", "journal": "J. Stat. Mech. (2022) 023201", "doi": "10.1088/1742-5468/ac4983", "categories": [ "cond-mat.stat-mech", "hep-th" ], "abstract": "We use scale invariant scattering theory to obtain the exact equations determining the renormalization group fixed points of the two-dimensional $CP^{N-1}$ model, for $N$ real. Also due to special degeneracies at $N=2$ and 3, the space of solutions for $N\\geq 2$ reduces to that of the $O(N^2-1)$ model, and accounts for a zero temperature critical point. For $N<2$ the space of solutions becomes larger than that of the $O(N^2-1)$ model, with the appearance of new branches of fixed points relevant for criticality in gases of intersecting loops.", "revisions": [ { "version": "v1", "updated": "2021-10-08T10:19:29.000Z" } ], "analyses": { "keywords": [ "scale invariant scattering theory", "zero temperature critical point", "renormalization group fixed points", "fixed points relevant", "exact equations" ], "tags": [ "journal article" ], "publication": { "publisher": "IOP" }, "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }