{ "id": "2110.03656", "version": "v1", "published": "2021-10-07T17:45:30.000Z", "updated": "2021-10-07T17:45:30.000Z", "title": "Boundary renormalisation of SPDEs", "authors": [ "Máté Gerencsér", "Martin Hairer" ], "comment": "51 pages", "journal": "Comm. PDE, Vol 47, 2070-2123 (2022)", "doi": "10.1080/03605302.2022.2109173", "categories": [ "math.PR", "math.AP" ], "abstract": "We consider the continuum parabolic Anderson model (PAM) and the dynamical $\\Phi^4$ equation on the $3$-dimensional cube with boundary conditions. While the Dirichlet solution theories are relatively standard, the case of Neumann/Robin boundary conditions gives rise to a divergent boundary renormalisation. Furthermore for $\\Phi^4_3$ a `boundary triviality' result is obtained: if one approximates the equation with Neumann boundary conditions and the usual bulk renormalisation, then the limiting process coincides with the one obtained using Dirichlet boundary conditions.", "revisions": [ { "version": "v1", "updated": "2021-10-07T17:45:30.000Z" } ], "analyses": { "subjects": [ "60H15", "60L30" ], "keywords": [ "continuum parabolic anderson model", "dirichlet boundary conditions", "divergent boundary renormalisation", "neumann/robin boundary conditions", "usual bulk renormalisation" ], "tags": [ "journal article" ], "publication": { "publisher": "Taylor-Francis" }, "note": { "typesetting": "TeX", "pages": 51, "language": "en", "license": "arXiv", "status": "editable" } } }