{ "id": "2110.03263", "version": "v1", "published": "2021-10-07T08:40:34.000Z", "updated": "2021-10-07T08:40:34.000Z", "title": "Lie algebra for rotational subsystems of a driven asymmetric top", "authors": [ "Eugenio Pozzoli", "Monika Leibscher", "Mario Sigalotti", "Ugo Boscain", "Christiane P. Koch" ], "comment": "10 pages, 7 figures", "journal": "J. Phys. A: Math. Theor. 55, 215301 (2022)", "doi": "10.1088/1751-8121/ac631d", "categories": [ "quant-ph" ], "abstract": "We present an analytical approach to construct the Lie algebra of finite-dimensional subsystems of the driven asymmetric top rotor. Each rotational level is degenerate due to the isotropy of space, and the degeneracy increases with rotational excitation. For a given rotational excitation, we determine the nested commutators between drift and drive Hamiltonians using a graph representation. We then generate the Lie algebra for subsystems with arbitrary rotational excitation using an inductive argument.", "revisions": [ { "version": "v1", "updated": "2021-10-07T08:40:34.000Z" } ], "analyses": { "keywords": [ "lie algebra", "driven asymmetric", "rotational subsystems", "arbitrary rotational excitation", "degeneracy increases" ], "tags": [ "journal article" ], "publication": { "publisher": "IOP" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }