{ "id": "2110.02569", "version": "v3", "published": "2021-10-06T08:23:15.000Z", "updated": "2024-07-30T12:12:22.000Z", "title": "On the transcendence of special values of Goss $L$-functions attached to Drinfeld modules", "authors": [ "Oğuz Gezmiş", "Changningphaabi Namoijam" ], "comment": "22 pages. The work in v2 of arXiv:2110.02569 has been divided into two papers: arXiv:2407.18916 and v3 of arXiv:2110.02569. The paper arXiv:2407.18916 includes generalizations of the results in section 4, section 5, and the appendix of v2 of arXiv:2110.02569", "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{F}_q$ be the finite field with $q$ elements and consider the rational function field $K:=\\mathbb{F}_q(\\theta)$. For a Drinfeld module $\\phi$ defined over $K$, we study the transcendence of special values of the Goss $L$-function attached to the abelian $t$-motive $M_{\\phi}$ of $\\phi$. Moreover, when $\\phi$ is a Drinfeld module of rank $r\\geq 2$ defined over $K$ which has everywhere good reduction, we prove that the value of the Goss $L$-function attached to the $(r-1)$-st exterior power of $M_{\\phi}$ at any positive integer is transcendental over $K$.", "revisions": [ { "version": "v3", "updated": "2024-07-30T12:12:22.000Z" } ], "analyses": { "subjects": [ "11G09", "11M38", "11J93" ], "keywords": [ "drinfeld module", "special values", "transcendence", "rational function field", "st exterior power" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }