{ "id": "2110.02539", "version": "v3", "published": "2021-10-06T07:12:00.000Z", "updated": "2022-10-22T08:44:32.000Z", "title": "On a different weighted zero-sum constant", "authors": [ "Santanu Mondal", "Krishnendu Paul", "Shameek Paul" ], "comment": "15 pages", "categories": [ "math.NT" ], "abstract": "For a finite abelian group $(G,+)$, the constant $C(G)$ is defined to be the smallest natural number $k$, such that any sequence of $k$ elements in $G$ has a subsequence of consecutive terms whose sum is zero. We also define a weighted version of this constant and determine its value for some particular weights, for the group $\\mathbb Z_n$.", "revisions": [ { "version": "v3", "updated": "2022-10-22T08:44:32.000Z" } ], "analyses": { "subjects": [ "11B50" ], "keywords": [ "weighted zero-sum constant", "finite abelian group", "smallest natural number", "subsequence", "consecutive terms" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }