{ "id": "2110.02188", "version": "v2", "published": "2021-10-05T17:26:58.000Z", "updated": "2023-06-12T16:54:10.000Z", "title": "Solving the membership problem for certain subgroups of $SL_2(\\mathbb{Z})$", "authors": [ "Sandie Han", "Ariane M. Masuda", "Satyanand Singh", "Johann Thiel" ], "comment": "New version extends results to cases when $u=1$ and index computations/proofs are included", "categories": [ "math.GR", "math.NT" ], "abstract": "For positive integers $u$ and $v$, let $L_u=\\begin{bmatrix}1 & 0 \\\\u&1\\end{bmatrix}$ and $R_v=\\begin{bmatrix}1 & v \\\\ 0 & 1\\end{bmatrix}$. Let $G_{u,v}$ be the group generated by $L_u$ and $R_v$. In a previous paper, the authors determined a characterization of matrices $M=\\begin{bmatrix}a & c \\\\b&d\\end{bmatrix}$ in $G_{u,v}$ when $u,v\\geq 3$ in terms of the short continued fraction representation of $b/d$. We extend this result to the case where $u+v> 4$. Additionally, we compute $[\\mathscr{G}_{u,v}\\colon G_{u,v}]$ for $u,v\\geq 1$, extending a result of Chorna, Geller, and Shpilrain.", "revisions": [ { "version": "v2", "updated": "2023-06-12T16:54:10.000Z" } ], "analyses": { "keywords": [ "membership problem", "short continued fraction representation", "positive integers", "characterization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }