{ "id": "2109.14962", "version": "v1", "published": "2021-09-30T09:50:34.000Z", "updated": "2021-09-30T09:50:34.000Z", "title": "Embedding in MDS codes and Latin cubes", "authors": [ "Vladimir N. Potapov" ], "comment": "7 pages", "journal": "Journal of Combinatorial Designs. 2022. V. 30 (9). P. 626--633", "doi": "10.1002/jcd.21849", "categories": [ "math.CO" ], "abstract": "An embedding of a code is a mapping that preserves distances between codewords. We prove that any code with code distance $\\rho$ and length $d$ can be embedded into an MDS code with the same code distance and length but under a larger alphabet. As a corollary we obtain embeddings of systems of partial mutually orthogonal Latin cubes and $n$-ary quasigroups.", "revisions": [ { "version": "v1", "updated": "2021-09-30T09:50:34.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "mds code", "code distance", "partial mutually orthogonal latin cubes", "larger alphabet", "preserves distances" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }