{ "id": "2109.14936", "version": "v2", "published": "2021-09-30T09:07:22.000Z", "updated": "2022-03-21T14:46:42.000Z", "title": "Sharp and quantitative estimates for the $p-$Torsion of convex sets", "authors": [ "Vincenzo Amato", "Alba Lia Masiello", "Gloria Paoli", "Rossano Sannipoli" ], "comment": "17 pages, 4 figures", "categories": [ "math.AP" ], "abstract": "Let $\\Omega\\subset\\mathbb{R}^n$, $n\\geq 2$, be a bounded, open and convex set and let $f$ be a positive and non-increasing function depending only on the distance from the boundary of $\\Omega$. We consider the $p-$torsional rigidity associated to $\\Omega$ for the Poisson problem with Dirichlet boundary conditions, denoted by $T_{f,p}(\\Omega)$. Firstly, we prove a P\\'olya type lower bound for $T_{f,p}(\\Omega)$ in any dimension; then, we consider the planar case and we provide two quantitative estimates in the case $f\\equiv 1 $.", "revisions": [ { "version": "v2", "updated": "2022-03-21T14:46:42.000Z" } ], "analyses": { "subjects": [ "35P15", "35J05", "35J25", "49Q10", "47J10" ], "keywords": [ "convex set", "quantitative estimates", "polya type lower bound", "dirichlet boundary conditions", "planar case" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }