{ "id": "2109.14498", "version": "v2", "published": "2021-09-29T15:32:32.000Z", "updated": "2022-04-28T08:34:12.000Z", "title": "Density conditions with stabilizers for lattice orbits of Bergman kernels on bounded symmetric domains", "authors": [ "Martijn Caspers", "Jordy Timo van Velthoven" ], "categories": [ "math.FA", "math.OA", "math.RT" ], "abstract": "Let $\\pi_{\\alpha}$ be a holomorphic discrete series representation of a connected semi-simple Lie group $G$ with finite center, acting on a weighted Bergman space $A^2_{\\alpha} (\\Omega)$ on a bounded symmetric domain $\\Omega$, of formal dimension $d_{\\pi_{\\alpha}} > 0$. It is shown that if the Bergman kernel $k^{(\\alpha)}_z$ is a cyclic vector for the restriction $\\pi_{\\alpha} |_{\\Gamma}$ to a lattice $\\Gamma \\leq G$ (resp. $(\\pi_{\\alpha} (\\gamma) k^{(\\alpha)}_z)_{\\gamma \\in \\Gamma}$ is a frame for $A^2_{\\alpha}(\\Omega)$), then $\\mathrm{vol}(G/\\Gamma) d_{\\pi_{\\alpha}} \\leq |\\Gamma_z|^{-1}$. The estimate $\\mathrm{vol}(G/\\Gamma) d_{\\pi_{\\alpha}} \\geq |\\Gamma_z|^{-1}$ holds for $k^{(\\alpha)}_z$ being a $p_z$-separating vector (resp. $(\\pi_{\\alpha} (\\gamma) k^{(\\alpha)}_z)_{\\gamma \\in \\Gamma / \\Gamma_z}$ being a Riesz sequence in $A^2_{\\alpha} (\\Omega)$). These estimates improve on general density theorems for restricted discrete series through the dependence on the stabilizers, while recovering in part sharp results for $G = \\mathrm{PSU}(1, 1)$.", "revisions": [ { "version": "v2", "updated": "2022-04-28T08:34:12.000Z" } ], "analyses": { "keywords": [ "bounded symmetric domain", "bergman kernel", "lattice orbits", "density conditions", "stabilizers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }