{ "id": "2109.13718", "version": "v2", "published": "2021-09-28T13:36:06.000Z", "updated": "2022-05-27T16:54:06.000Z", "title": "Height functions on Hecke orbits and the generalised André-Pink-Zannier conjecture", "authors": [ "Rodolphe Richard", "Andrei Yafaev" ], "categories": [ "math.NT", "math.AG" ], "abstract": "We introduce and study the notion of a generalised Hecke orbit in a Shimura variety. We define a height function on such an orbit and study its properties. We obtain a lower bounds for the size of Galois orbits of points in a generalised Hecke orbit in terms of these height, assuming a version of the Mumford-Tate conjecture. We then use it to prove the generalised Andr\\'e-Pink-Zannier conjecture under this assumption by implementing the Pila-Zannier strategy.", "revisions": [ { "version": "v2", "updated": "2022-05-27T16:54:06.000Z" } ], "analyses": { "subjects": [ "03C64", "11G18", "11G50", "11F80", "14L30", "20G35", "15A16", "14G35" ], "keywords": [ "generalised andré-pink-zannier conjecture", "height function", "generalised hecke orbit", "pila-zannier strategy", "shimura variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }