{ "id": "2109.13652", "version": "v2", "published": "2021-09-20T04:48:08.000Z", "updated": "2022-03-02T08:27:46.000Z", "title": "On the quantity $m^2-p^k$ where $p^k m^2$ is an odd perfect number -- Part II", "authors": [ "Jose Arnaldo Bebita Dris", "Immanuel Tobias San Diego" ], "comment": "11 pages, incorporated referee comments and suggestions, added Section 5.1, in press at NNTDM ", "categories": [ "math.NT" ], "abstract": "Let $p^k m^2$ be an odd perfect number with special prime $p$. Extending previous work of the authors, we prove that the inequality $m < p^k$ follows from $m^2 - p^k = 2^r t$, where $r \\geq 2$ and $\\gcd(2,t)=1$, under the following hypotheses: (a) $m > t > 2^r$, or (b) $m > 2^r > t$. We also prove that the estimate $m^2 - p^k > 2m$ holds. We can also improve this unconditional estimate to $m^2 - p^k > {m^2}/3$.", "revisions": [ { "version": "v2", "updated": "2022-03-02T08:27:46.000Z" } ], "analyses": { "subjects": [ "11A05", "11A25" ], "keywords": [ "odd perfect number", "unconditional estimate", "special prime", "inequality" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }