{ "id": "2109.12095", "version": "v1", "published": "2021-09-24T17:40:35.000Z", "updated": "2021-09-24T17:40:35.000Z", "title": "Convexity of the Berezin Range", "authors": [ "Carl C. Cowen", "Christopher Felder" ], "journal": "Linear Algebra and its Applications Volume 647, 15 August 2022, Pages 47-63", "doi": "10.1016/j.laa.2022.04.003", "categories": [ "math.FA", "math.CV" ], "abstract": "This paper discusses the convexity of the range of the Berezin transform. For a bounded operator $T$ acting on a reproducing kernel Hilbert space $H$ (on a set $X$), this is the set $B(T) : = \\{ < Tk_x, k_x >_H : x \\in X \\}$, where $k_x$ is the normalized reproducing kernel for $H$ at $x \\in X$. Primarily, we focus on characterizing convexity of this range for a class of composition operators acting on the Hardy space of the unit disk.", "revisions": [ { "version": "v1", "updated": "2021-09-24T17:40:35.000Z" } ], "analyses": { "keywords": [ "berezin range", "reproducing kernel hilbert space", "berezin transform", "unit disk", "hardy space" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }