{ "id": "2109.11908", "version": "v2", "published": "2021-09-24T11:58:19.000Z", "updated": "2022-02-12T12:51:55.000Z", "title": "Variational solutions to the total variation flow on metric measure spaces", "authors": [ "Vito Buffa", "Juha Kinnunen", "Cintia Pacchiano Camacho" ], "categories": [ "math.AP", "math.FA", "math.MG" ], "abstract": "We discuss a purely variational approach to the total variation flow on metric measure spaces with a doubling measure and a Poincar\\'e inequality. We apply the concept of parabolic De Giorgi classes together with upper gradients, Newtonian spaces and functions of bounded variation to prove a necessary and sufficient condition for a variational solution to be continuous at a given point.", "revisions": [ { "version": "v2", "updated": "2022-02-12T12:51:55.000Z" } ], "analyses": { "subjects": [ "49J27", "49J40", "49J45", "30L99", "35A15" ], "keywords": [ "total variation flow", "metric measure spaces", "variational solution", "poincare inequality", "purely variational approach" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }