{ "id": "2109.11532", "version": "v1", "published": "2021-09-23T17:55:34.000Z", "updated": "2021-09-23T17:55:34.000Z", "title": "Many nodal domains in random regular graphs", "authors": [ "Shirshendu Ganguly", "Theo McKenzie", "Sidhanth Mohanty", "Nikhil Srivastava" ], "comment": "18 pages", "categories": [ "math.PR", "cs.DM", "math-ph", "math.CO", "math.MP", "math.SP" ], "abstract": "Let $G$ be a random $d$-regular graph. We prove that for every constant $\\alpha > 0$, with high probability every eigenvector of the adjacency matrix of $G$ with eigenvalue less than $-2\\sqrt{d-2}-\\alpha$ has $\\Omega(n/$polylog$(n))$ nodal domains.", "revisions": [ { "version": "v1", "updated": "2021-09-23T17:55:34.000Z" } ], "analyses": { "subjects": [ "05C80", "60B20" ], "keywords": [ "random regular graphs", "nodal domains", "high probability", "adjacency matrix" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }