{ "id": "2109.11339", "version": "v1", "published": "2021-09-23T12:40:27.000Z", "updated": "2021-09-23T12:40:27.000Z", "title": "Global well posedness for a Q-tensor model of nematic liquid crystals", "authors": [ "Miho Murata", "Yoshihiro Shibata" ], "comment": "29 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we prove the global well posedness and the decay estimates for a $\\mathbb Q$-tensor model of nematic liquid crystals in $\\mathbb R^N$, $N \\geq 3$. This system is coupled system by the Navier-Stokes equations with a parabolic-type equation describing the evolution of the director fields $\\mathbb Q$. The proof is based on the maximal $L_p$ -$L_q$ regularity and the $L_p$ -$L_q$ decay estimates to the linearized problem.", "revisions": [ { "version": "v1", "updated": "2021-09-23T12:40:27.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D05" ], "keywords": [ "nematic liquid crystals", "q-tensor model", "decay estimates", "director fields", "parabolic-type equation" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }