{ "id": "2109.10520", "version": "v1", "published": "2021-09-22T05:26:59.000Z", "updated": "2021-09-22T05:26:59.000Z", "title": "Note on the Turán number of the $3$-linear hypergraph $C_{13}$", "authors": [ "Shengtong Zhang" ], "comment": "3 pages, no figures", "categories": [ "math.CO" ], "abstract": "Let $C_{13}$ be the $3$-linear hypergraph on $9$ vertices $\\{a,b,c,d,e,f,g,h,i\\}$ with edges $$E = \\{\\{a,b,c\\}, \\{a, d,e\\}, \\{b, f, g\\}, \\{c, h,i\\}\\}.$$ Proving a conjecture of Gy\\'arf\\'as et. al., we show that $$\\text{ex}(n, C_{13}) \\leq \\frac{3n}{2}.$$ This essentially completes the determination of linear Tur\\'an number for $3$-linear hypergraphs with at most $4$ edges.", "revisions": [ { "version": "v1", "updated": "2021-09-22T05:26:59.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "linear hypergraph", "turán number", "linear turan number", "essentially completes" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }