{ "id": "2109.10344", "version": "v1", "published": "2021-09-21T17:56:43.000Z", "updated": "2021-09-21T17:56:43.000Z", "title": "Distribution of certain $\\ell$-regular partitions and triangular numbers", "authors": [ "Chiranjit Ray" ], "categories": [ "math.NT" ], "abstract": "Let $pod_{\\ell}(n)$ be the number of $\\ell$-regular partitions of $n$ with distinct odd parts. In this article, prove that for any positive integer $k$, the set of non-negative integers $n$ for which $pod_{\\ell}(n)\\equiv 0 \\pmod{p^{k}}$ has density one under certain conditions on $\\ell$ and $p$. For $p \\in \\{3,5,7\\}$, we also exhibit multiplicative identities for $pod_{p}(n)$ modulo $p.$", "revisions": [ { "version": "v1", "updated": "2021-09-21T17:56:43.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83", "11F11", "11F20" ], "keywords": [ "regular partitions", "triangular numbers", "distribution", "distinct odd parts", "non-negative integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }