{ "id": "2109.09925", "version": "v1", "published": "2021-09-21T02:57:32.000Z", "updated": "2021-09-21T02:57:32.000Z", "title": "Towards supersaturation for oddtown and eventown", "authors": [ "Jason O'Neill" ], "categories": [ "math.CO" ], "abstract": "Given a collection $\\mathcal{A}$ of subsets of an $n$ element set, let $\\text{op}(\\mathcal{A})$ denote the number of distinct pairs $A,B \\in \\mathcal{A}$ for which $|A \\cap B|$ is odd. Using linear algebra arguments, we prove that for any collection $\\mathcal{A}$ of $2^{\\lfloor n/2 \\rfloor}+1$ even-sized subsets of an $n$ element set that $\\text{op}(\\mathcal{A}) \\geq 2^{\\lfloor n/2 \\rfloor-1}$. We also prove that for any collection $\\mathcal{A}$ of $n+1$ odd-sized subsets of an $n$ element set that $\\text{op}(\\mathcal{A}) \\geq 3$, and that both of these results are best possible. We also consider the problem for larger collections of odd-sized and even-sized sets respectively.", "revisions": [ { "version": "v1", "updated": "2021-09-21T02:57:32.000Z" } ], "analyses": { "keywords": [ "element set", "supersaturation", "linear algebra arguments", "distinct pairs", "larger collections" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }