{ "id": "2109.09370", "version": "v1", "published": "2021-09-20T08:44:05.000Z", "updated": "2021-09-20T08:44:05.000Z", "title": "Clustering of consecutive numbers in permutations avoiding a pattern and in separable permutations", "authors": [ "Ross G. Pinsky" ], "categories": [ "math.CO", "math.PR" ], "abstract": "Let $S_n$ denote the set of permutations of $[n]:=\\{1,\\cdots, n\\}$, and denote a permutation $\\sigma\\in S_n$ by $\\sigma=\\sigma_1\\sigma_2\\cdots \\sigma_n$. For $l\\ge2$ an integer, let $A^{(n)}_{l;k}\\subset S_n$ denote the event that the set of $l$ consecutive numbers $\\{k, k+1,\\cdots, k+l-1\\}$ appears in a set of consecutive positions: $\\{k,k+1,\\cdots, k+l-1\\}=\\{\\sigma_a,\\sigma_{a+1},\\cdots, \\sigma_{a+l-1}\\}$, for some $a$. For $\\tau\\in S_m$, let $S_n(\\tau)$ denote the set of $\\tau$-avoiding permutations in $S_n$, and let $P_n^{\\text{av}(\\tau)}$ denote the uniform probability measure on $S_n(\\tau)$. Also, let $S_n^{\\text{sep}}$ denote the set of separable permutations in $S_n$, and let $P_n^{\\text{sep}}$ denote the uniform probability measure on $S_n^{\\text{sep}}$. We investigate the quantities $P_n^{\\text{av}(\\tau)}(A^{(n)}_{l;k})$ and $P_n^{\\text{sep}}(A^{(n)}_{l;k})$ for fixed $n$, and the limiting behavior as $n\\to\\infty$. We also consider the asymptotic properties of this limiting behavior as $l\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2021-09-20T08:44:05.000Z" } ], "analyses": { "subjects": [ "05A05", "60C05" ], "keywords": [ "consecutive numbers", "separable permutations", "permutations avoiding", "uniform probability measure", "limiting behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }