{ "id": "2109.09359", "version": "v1", "published": "2021-09-20T08:24:07.000Z", "updated": "2021-09-20T08:24:07.000Z", "title": "On $q$-scale functions of spectrally negative Lévy processes", "authors": [ "Anita Behme", "David Oechsler", "René L. Schilling" ], "categories": [ "math.PR" ], "abstract": "We obtain series expansions of the $q$-scale functions of arbitrary spectrally negative L\\'evy processes, including processes with infinite jump activity, and use these to derive various new examples of explicit $q$-scale functions. Moreover, we study smoothness properties of the $q$-scale functions of spectrally negative L\\'evy processes with infinite jump activity. This complements previous results of Chan et al. [7] for spectrally negative L\\'evy processes with Gaussian component or bounded variation.", "revisions": [ { "version": "v1", "updated": "2021-09-20T08:24:07.000Z" } ], "analyses": { "subjects": [ "60G51", "60J45", "91G05" ], "keywords": [ "spectrally negative lévy processes", "scale functions", "infinite jump activity", "arbitrary spectrally negative levy processes", "study smoothness properties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }