{ "id": "2109.08785", "version": "v1", "published": "2021-09-17T23:41:58.000Z", "updated": "2021-09-17T23:41:58.000Z", "title": "Quantitative destruction of invariant circles", "authors": [ "Lin Wang" ], "comment": "arXiv admin note: substantial text overlap with arXiv:1208.2840, arXiv:1403.0986, arXiv:1106.6137", "categories": [ "math.DS" ], "abstract": "For area-preserving twist maps on the annulus, we consider the problem on quantitative destruction of invariant circles with a given frequency $\\omega$ of an integrable system by a trigonometric polynomial of degree $N$ perturbation $R_N$ with $\\|R_N\\|_{C^r}<\\epsilon$. We obtain a relation among $N$, $r$, $\\epsilon$ and the arithmetic property of $\\omega$, for which the area-preserving map admit no invariant circles with $\\omega$.", "revisions": [ { "version": "v1", "updated": "2021-09-17T23:41:58.000Z" } ], "analyses": { "keywords": [ "invariant circles", "quantitative destruction", "area-preserving twist maps", "trigonometric polynomial", "arithmetic property" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }