{ "id": "2109.08137", "version": "v1", "published": "2021-09-16T17:51:48.000Z", "updated": "2021-09-16T17:51:48.000Z", "title": "G-torsors and universal torsors over nonsplit del Pezzo surfaces", "authors": [ "Ulrich Derenthal", "Norbert Hoffmann" ], "comment": "9 pages", "categories": [ "math.AG", "math.NT" ], "abstract": "Let S be a smooth del Pezzo surface that is defined over a field K and splits over a Galois extension L. Let G be either the split reductive group given by the root system of $S_L$ in Pic $S_L$, or a form of it containing the N\\'eron-Severi torus. Let $\\mathcal{G}$ be the G-torsor over $S_L$ obtained by extension of structure group from a universal torsor $\\mathcal{T}$ over $S_L$. We prove that $\\mathcal{G}$ does not descend to S unless $\\mathcal{T}$ does. This is in contrast to a result of Friedman and Morgan that such $\\mathcal{G}$ always descend to singular del Pezzo surfaces over $\\mathbb{C}$ from their desingularizations.", "revisions": [ { "version": "v1", "updated": "2021-09-16T17:51:48.000Z" } ], "analyses": { "subjects": [ "14J26", "14L30", "11E57", "14G27" ], "keywords": [ "nonsplit del pezzo surfaces", "universal torsor", "smooth del pezzo surface", "singular del pezzo surfaces", "structure group" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }