{ "id": "2109.06833", "version": "v1", "published": "2021-09-14T17:17:34.000Z", "updated": "2021-09-14T17:17:34.000Z", "title": "On the best Ulam constant of the linear differential operator with constant coefficients", "authors": [ "Alina-Ramona Baias", "Dorian Popa" ], "categories": [ "math.CA" ], "abstract": "The linear differential operator with constant coefficients $$D(y)=y^{(n)}+a_1 y^{(n-1)}+\\ldots+a_n y,\\quad y\\in \\mathcal{C}^{n}(\\mathbb{R}, X)$$ acting in a Banach space $X$ is Ulam stable if and only if its characteristic equation has no roots on the imaginary axis. We prove that if the characteristic equation of $D$ has distinct roots $r_k$ satisfying $\\Real r_k>0,$ $1\\leq k\\le n,$ then the best Ulam constant of $D$ is $K_D=\\frac{1}{|V|}\\int_{0}^{\\infty}\\left|\\sum\\limits_{k=1}^n(-1)^kV_ke^{-r_k x}\\right|dx,$ where $V=V(r_1,r_2,\\ldots,r_n)$ and $V_k=V(r_1,\\ldots,r_{k-1},r_{k+1}, \\ldots, r_n),$ $1\\leq k\\leq n,$ are Vandermonde determinants.", "revisions": [ { "version": "v1", "updated": "2021-09-14T17:17:34.000Z" } ], "analyses": { "keywords": [ "linear differential operator", "best ulam constant", "constant coefficients", "characteristic equation", "banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }